
Performance Analysis of High Performance
Computing Applications on the Amazon Web

Services Cloud
Keith R. Jackson

and Lavanya Ramakrishnan
Advanced Computing for Science
Lawrence Berkeley National Lab

Berkeley, CA 94720
KRJackson@lbl.gov

LRamakrishnan@lbl.gov

Krishna Muriki
Information Technology

Lawrence Berkeley National Lab
Berkeley, CA 94720

KMuriki@lbl.gov

Shane Canon, Shreyas Cholia, John Shalf
Harvey J. Wasserman, and Nicholas J. Wright

NERSC
Lawrence Berkeley National Lab

Berkeley, CA 94720
SCanon@lbl.gov, SCholia@lbl.gov, JShalf@lbl.gov

HJWasserman@lbl.gov, and NJWright@lbl.gov

Abstract—Cloud computing has seen tremendous growth,
particularly for commercial web applications. The on-demand,
pay-as-you-go model creates a flexible and cost-effective means
to access compute resources. For these reasons, the scientific
computing community has shown increasing interest in exploring
cloud computing. However, the underlying implementation and
performance of clouds are very different from those at traditional
supercomputing centers. It is therefore critical to evaluate the
performance of HPC applications in today’s cloud environments
to understand the tradeoffs inherent in migrating to the cloud.
This work represents the most comprehensive evaluation to date
comparing conventional HPC platforms to Amazon EC2, using
real applications representative of the workload at a typical
supercomputing center. Overall results indicate that EC2 is six
times slower than a typical mid-range Linux cluster, and twenty
times slower than a modern HPC system. The interconnect on
the EC2 cloud platform severely limits performance and causes
significant variability.

I. INTRODUCTION

Cloud computing has emerged as an important paradigm
for accessing distributed computing resources. Commercial
providers such as Amazon, Rackspace, and Microsoft, all offer
environments for developing and deploying applications in the
cloud. There are many definitions of cloud computing, but
some characteristics exist in most definitions, e.g., virtual-
ized environments and on-demand provisioning of compute
resources.

The goal of the recently funded DOE Magellan project is to
evaluate the ability of cloud computing to meet DOE’s com-
puting needs. The project is evaluating existing commercial
cloud offerings and technologies. The purpose of this paper
is to examine the performance of existing cloud computing
infrastructures and create a mechanism for their quantitative
evaluation. Our initial work focuses on Amazon EC2 and its
performance, which we believe is representative of current
mainstream commercial cloud computing services.

Several groups have reported studies of the applicability of
cloud-based environments for scientific computing on Amazon

EC2 [1], [2], [3], [4]. Various groups have run both standard
benchmark suites such as Linpack and NAS [5], [6], [7], [8],
[9], and network performance tests [10].

The goal of the work presented here is to build upon these
studies by using the NERSC benchmarking framework [11],
[12], [13], [14], [15], [16], [17], [18] to evaluate the perfor-
mance of real scientific workloads on EC2. This framework
contains real scientific applications, that are representative
of the whole NERSC workload. It includes a diverse range
of numerical methods and data-structure representations in
the areas of climate, materials science, fusion, accelerator
modeling, astrophysics, and quantum chromodynamics. In
addition, we also instrument the runs using the Integrated
Performance Monitoring (IPM) [19] framework. This allows
us to determine, in a non-pertubative manner, the amount
of time an application spends computing and communicating
using MPI. This information provides insight into which
aspects of the underlying architecture are effecting perfor-
mance the greatest. Additionally, our approach includes a well-
documented method for summarizing achieved, application-
level performance based on a simple aggregate measure that
expresses useful potential of the systems considered.

Previous work has focused solely on the performance of
low-level benchmarks on EC2. They show that tightly coupled
applications often exhibit poor performance in such an envi-
ronment. In this work we focus on evaluating the performance
of a suite of benchmarks that represent the workload of a typ-
ical HPC center. We believe this is an important differentiator
of our efforts from previous ones, as we provide a mechanism
for the quantitative evaluation of exactly which characteristics
of an HPC application are important for determining its
performance in a cloud environment.

Specifically, we make the following contributions in this
paper,

• We provide the broadest evaluation to date of application
performance on virtualized cloud computing platforms.

• We describe our experiences with running on Amazon



EC2 and the encountered performance and availability
variations.

• We provide an analysis of the impact of virtualization
based on the communication characteristics of the appli-
cation as seen through IPM.

• We summarize the impact of virtualization through a sim-
ple, well-documented aggregate measure that expresses
the useful potential of the systems considered.

Section II describes related work, section III describes the
methods used in this study, including the machines used and
the benchmarks run. Section IV discusses the performance of
the benchmarks and compares the IPM profile from the EC2
with that of a science-oriented commodity cluster. Section V
describes the tools used, and the impediments encountered in
attempting to benchmark EC2 performance and Section VI
offers our conclusions.

II. RELATED WORK

A number of different groups have conducted feasibility
studies of running their scientific applications in the Amazon
cloud. In addition, previous work has examined the perfor-
mance of individual Amazon AWS components, e.g., the
simple storage service (S3) [20].

Hazelhurst examines the performance of the bioinformatics
application WCD [1]. The performance and storage costs
of running the Montage workflow on EC2 are detailed by
Deelman et. al. [2]. The High-Energy and Nulclear Physics
(HENP) STAR experiment has examined the costs and chal-
lenges associated with running their analysis application on the
EC2 cloud [3], [21], [4]. In previous work we examined the
usefulness of cloud computing for e-Science applications [22],
[23].

Standard benchmarks have also been evaluated on Amazon
EC2. Napper et. al. examine the performance of the Linpack
benchmarks on different EC2 instance types [5]. The NAS
benchmarks have been run by Evangelinos et. al. [6] and
Masud [7]. Osterman et al. ran a variety of microbenchmarks
and kernels [8]. Rehr. et al. show that Amazon EC2 is a
feasible platform for applications that don’t need advanced
network performance [24]. Wang et al [10] study the impact
of virtualization on network performance.

This work is unique in examining the performance of a
set of applications that represent the typical workload run
at a major supercomputing center. The applications chosen
represent both the range of science done and the algorithms
typical of supercomputing codes. More importantly, by an-
alyzing the running code using IPM we are able to profile
the underlying characteristics of the application, and can
quantitatively identify the major performance bottlenecks and
resource constraints with respect to the EC2 cloud.

III. METHODS

A. Machines Used In Study

All results were obtained during normal, multi-user, pro-
duction periods on all machines.

1) Carver: is a 400 node IBM iDataPlex cluster located
at the National Energy Research Scientific Computing Center
(NERSC), which is part of Lawrence Berkeley National Lab-
oratory (LBNL). It has quad-core Intel Nehalem processors
running at 2.67 GHz, with dual socket nodes and a single
Quad Data Rate (QDR) IB link per node to a network that is
locally a fat-tree with a global 2D-mesh. Each node has 24 GB
of RAM (3 GB per core). All codes compiled on Carver used
version 10.0 of the Portland Group suite and version 1.4.1 of
Open MPI.

We note here that the Carver machine that we use as part
of our suite of machines here is identical, in hardware terms,
to the Magellan cloud testbed at NERSC. We hesitate to call
Carver itself a cloud, as these experiments were not performed
in a virtual environment, but the performance numbers from
Carver do represent the best that Magellan is likely to achieve,
given the additional overhead induced by virtualization soft-
ware, resource sharing etc. that a cloud environment is likely
to contain.

2) Franklin: is a 9660 node Cray XT4 supercomputer and
is also located at NERSC. Each XT4 compute node contains
a single quad-core 2.3 GHz AMD Opteron ”Budapest” pro-
cessor, which is tightly integrated to the XT4 interconnect
via a Cray SeaStar-2 ASIC through a 6.4 GB/s bidirectional
HyperTransport interface. All the SeaStar routing chips are
interconnected in a 3D torus topology, where each node has
a direct link to its six nearest neighbors. Each node has 8 GB
of RAM (2 GB per core). Codes were compiled with the
Pathscale (MAESTRO) and Portland Group version 9.0.4 (all
others) compilers.

3) Lawrencium: is a 198-node (1584 core) Linux cluster
operated by the Information Technology Division at LBNL.
Each compute node is a Dell Poweredge 1950 server equipped
with two Intel Xeon quad-core 64 bit, 2.66GHz Harpertown
processors, connected to a Dual Data Rate (DDR) Infiniband
network configured as a fat tree with a 3:1 blocking factor.
Each node contains 16 GB of RAM (2 GB per core). Codes
were compiled using Intel 10.0.018 and Open MPI 1.3.3.

4) Amazon EC2: is a virtual computing environment that
provides a web services API for launching and managing
virtual machine instances. Amazon provides a number of dif-
ferent instance types that have varying performance character-
istics. CPU capacity is defined in terms of an abstract Amazon
EC2 Compute Unit. One EC2 Compute Unit is approximately
equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. For our tests we used the m1.large instances type.
The m1.large instance type has four EC2 Compute Units, two
virtual cores with two EC2 Compute Units each, and 7.5 GB
of memory. The nodes are connected with gigabit ethernet.
To ensure consistency, the binaries compiled on Lawrencium
were used on EC2.

All of the nodes are located in the US East region in
the same availability zone. Amazon offers no guarantees on
proximity of nodes allocated together, and there is significant
variability in latency between nodes.

In addition to the variability in network latency, we also see



NFS Server VM

EBS Storage
Application Code, I/O Data

Head Node 
VM 

(mpirun)

Worker 
Node VM 1

Worker 
Node VM 1

Worker 
Node VM 1

Fig. 1. Virtual Cluster Architecture

variability in the underlying hardware the virtual machines are
running on. By examining /proc/cpuinfo we are able to identify
the actual CPU type of the un-virtualized hardware. In our
test runs, we identified three different CPU’s: the Intel Xeon
E5430 2.66GHz quad-core processor, the AMD Opteron 270
2.0GHz dual-core processor, and the AMD Opteron 2218 HE
2.6GHz dual-core processor. We have no control over which
underlying hardware our virtual machines are instantiated on.
Thus, we almost always end up with a virtual cluster running
on a heterogeneous set of processors. This hetrogeneneity also
meant we were unable to use any of the processor specific
compiler options.

Before we could begin our study, we had to address the
major differences between the Amazon Web Services environ-
ment and that at a typical supercomputing center. For example,
almost all HPC applications assume the presence of a shared
parallel filesystem between compute nodes, and a head node
that can submit MPI jobs to all of the worker nodes. Running
these applications in the cloud requires either that the features
of a typical HPC environment are replicated in the cloud, or
that the application is changed to accommodate the default
configuration of the cloud.

For this paper we chose to replicate a typical HPC cluster
environment in the cloud by creating virtual clusters [25], [3].
We used a series of Python scripts to configure a file server, a
head node, and a series of worker nodes. The head node could
submit MPI jobs to all of the worker nodes, and the file server
provided a shared filesystem between the nodes. This setup is
illustrated in Figure 1.

To implement the shared filesystem, we attached an Amazon
Elastic Block Store (EBS) [26] device to the fileserver virtual
machine. EBS provides a block level storage volume to
EC2 instances that persists independently from the instance
lifetimes. On top of the EBS volume we built a standard Linux
ext3 file system, that was then exported via NFS to all of the
virtual cluster nodes.

B. Applications Used In Study

A supercomputer center such as NERSC typically serves
a diverse user community. In NERSC’s case the commu-
nity contains over 3,000 users, 400 distinct projects and is

comprised of some 600 codes that serve the diverse science
needs of the DOE Office of Science research community.
Abstracting the salient performance-critical features of such a
workload is a challenging task. However, significant workload
characterization efforts have resulted in a set of full application
benchmarks that span a range of science domains, paralleliza-
tion schemes, and concurrencies, as well as machine-based
characteristics that influence performance such as message
size, memory access pattern, and working set sizes. These
applications form the basis for the Sustained System Perfor-
mance (SSP) metric, which better represents the effectiveness
of a system for delivered performance on applications rather
than peak FLOP rates [27].

As well as being representative of the DOE Office of
Science workload, some of these applications have also been
used by other federal agencies as they represent significant
parts of their workload. MILC and PARATEC were used by
the NSF, CAM by NCAR and GAMESS by the NSF and DoD
HPCMO. The representation of the methods embodied in our
benchmark suite goes well beyond the particular codes em-
ployed. For example, PARATEC is representative of methods
that constitute one of the largest consumer of supercomputing
cycles in computer centers around the world [11]. Therefore,
although our benchmark suite was developed with the NERSC
workload in mind, we are confident that it is broadly represen-
tative of the workloads of many supercomputing centers today.
More details about these applications and their computational
characteristics can be found in Ref. [28] (as well as in the
references cited here).

The typical problem configurations for these benchmarks
are defined for much larger ”capability” systems, so we had
to construct reduced size problem configurations to target the
requirements of mid-range workloads that are the subject of
this study. For example, many of the input configurations were
constructed for a system acquisition (begun during 2008) that
resulted in a 1-PetaFlop peak resource that will contain over
150,000 cores - considerably larger than is possible to run in
todays commercial cloud infrastructures. Thus, problem sets
were modified to use smaller grids and concomitant concurren-
cies along with shorter iteration spaces and/or shorter simu-
lation durations. Additionally we also modified the problem
configurations to eliminate any significant I/O because I/O
performance is beyond the scope of this work.

Next we describe each of the applications that make up our
benchmarking suite, describe the parameters they were run
with, and comment upon their computation and communica-
tion characteristics.

1) CAM: The Community Atmosphere Model (CAM) is
the atmospheric component of the Community Climate System
Model (CCSM) developed at NCAR and elsewhere for the
weather and climate research communities [29], [30]. In this
work we use CAM v3.1 with a finite volume (FV) dynamical
core and a ”D” grid (about 0.5 degree resolution). In this case
we used 120 MPI tasks and ran for 3 days simulated time (144
timesteps).

CAM uses a formalism effectively containing two different,



two-dimensional domain decompositions, one for the dynam-
ics that is decomposed over latitude and vertical level and
the other for remapping that is decomposed over longitude-
latitude. Optimized transposes move data from the program
structures between these decompositions. CAM is character-
ized by relatively low computational intensity that stresses
on-node/processor data movement and relatively long MPI
messages that stress interconnect point-to-point bandwidth.

2) Gamess: The GAMESS (General Atomic and Molecular
Electronic Structure System) code from the Gordon research
group at the Department of Energy’s Ames Lab at Iowa
State University contains various important tools for ab-initio
quantum chemistry calculations. The benchmark used here
calculates the B3LYP DFT energy and gradient for a 43 atom
molecule and runs on 64 cores. Gamess is the only benchmark
for which no problem size scaling was performed.

GAMESS uses an SPMD approach but includes its own
underlying communication library, called the Distributed Data
Interface (DDI), to present the abstraction of a global shared
memory with one-side data transfers even on systems with
physically distributed memory. On the cluster systems in-
cluded here GAMESS was run using socket communication.
On the XT4 an MPI implementation of DDI is used in which
only one-half of the processors allocated compute while the
other half are essentially data movers. GAMESS is character-
ized by considerable stride-1 memory access - which stresses
memory bandwidth - and interconnect collective performance.

3) GTC: GTC is a fully self-consistent, gyrokinetic 3-
D Particle-in-cell (PIC) code with a non-spectral Poisson
solver [31] . It uses a grid that follows the field lines as they
twist around a toroidal geometry representing a magnetically
confined toroidal fusion plasma. The version of GTC used
here uses a fixed, 1-D domain decomposition with 64 domains
and 64 MPI tasks. The benchmark runs are for 250 timesteps
using 10 particles per grid cell (2 million grid points, 20
million particles). Communications at this concurrency are
dominated by nearest neighbor exchange that are bandwidth-
bound. The most computationally intensive parts of GTC
involve gather/deposition of charge on the grid and particle
”push” steps. The charge deposition utilizes indirect address-
ing and therefore stresses random access to memory.

4) IMPACT-T: IMPACT-T (Integrated Map and Particle
Accelerator Tracking Time) is an object-oriented Fortran90
code from a suite of computational tools for the prediction
and performance enhancement of accelerators. It includes
the arbitrary overlap of fields from a comprehensive set of
beamline elements, and uses a parallel, relativistic PIC method
with a spectral integrated Green function solver. A two-
dimensional domain decomposition in the y-z directions is
used along with a dynamic load balancing scheme based on
domain. Hockneys FFT algorithm is used to solve Poissons
equation with open boundary conditions. The problems chosen
here are scaled down quite considerably from the official
NERSC benchmarks, in terms of number of particles and grid
size (4X), 2-D processor configuration (64 cores instead of
256 and 1,024), and number of time steps run (100 instead

of 2,000). IMPACT-T performance is typically sensitive to
memory bandwidth and MPI collective performance. (Note
that although both GTC and IMPACT-T are PIC codes, their
performance characteristics are quite different.)

5) MAESTRO: MAESTRO is used for simulating astro-
physical flows such as those leading up to ignition in Type Ia
supernovae. Its integration scheme is embedded in an adaptive
mesh refinement algorithm based on a hierarchical system of
rectangular non-overlapping grid patches at multiple levels
with different resolution; however, in this benchmark using
MAESTRO the grid does not adapt. A multigrid solver is
used. Parallelization is via a 3-D domain decomposition in
which data and work are apportioned using a coarse-grained
distribution strategy to balance the load and minimize com-
munication costs. The MAESTRO communication topology
pattern is quite unusual and tends to stress simple topology
interconnects. With a very low computational intensity the
code stresses memory performance, especially latency; its
implicit solver technology stresses global communications;
and its message passing utilizes a wide range of message sizes
from short to relatively moderate. The problem used was the
NERSC-6 ”Medium” case (512 X 512 X 1024 grid) on 256
cores but for only 3 timesteps. This problem is more typically
benchmarked on 512 cores for 10 timesteps.

6) MILC: This code represents Lattice Computation that
is used to study Quantum ChromoDynamics (QCD), the
theory of the sub-atomic ”strong” interactions responsible for
binding quarks into protons and neutrons and holding them
together in the nucleus. QCD discretizes space and evaluates
field variables on sites and links of a regular hypercube
lattice in four-dimensional space time. It involves integrating
an equation of motion for hundreds or thousands of time
steps that requires inverting a large, sparse matrix at each
integration step. The sparse, nearly-singular matrix problem is
solved using a conjugate gradient (CG) method and many CG
iterations are required for convergence. Within a processor,
the four-dimensional nature of the problem requires gathers
from widely separated locations in memory. The inversion
by CG requires repeated three-dimensional complex matrix-
vector multiplications, which reduces to a dot product of three
pairs of three-dimensional complex vectors. Each dot product
consists of five multiply-add operations and one multiply.
The parallel programming model for MILC is a 4-D domain
decomposition in which each task exchanges data with its eight
nearest neighbors as well as participating in the all-reduce calls
with very small payload as part of the CG algorithm. MILC is
extremely dependent on memory bandwidth and prefetching
and exhibits a high computational intensity.

In this work we use a 32×32×16×18 global lattice on 64
cores with 2 quark flavors, four trajectories and eight steps per
trajectory; this results in over 35,000 CG iterations per run.
MILC benchmarking at NERSC uses up to 8,192 cores on a
643×144 grid with 15 steps per trajectory.

7) Paratec: PARATEC (PARAllel Total Energy Code)
performs ab initio Density Functional Theory quantum-
mechanical total energy calculations using pseudo-potentials, a



TABLE I
HPCC PERFORMANCE

Machine DGEMM STREAM Latency Bandwidth RandRing Lat. RandRing BW HPL FFTE PTRANS RandAccess
Gflops GB/s µs GB/s µs GB/s Tflops Gflops GB/s GUP/s

Carver 10.2 4.4 2.1 3.4 4.7 0.30 0.56 21.99 9.35 0.044
Franklin 8.4 2.30 7.8 1.6 19.6 0.19 0.47 14.24 2.63 0.061

Lawrencium 9.6 0.70 4.1 1.2 153.3 0.12 0.46 9.12 1.34 0.013
EC2 4.6 1.7 145 0.06 2065.2 0.01 0.07 1.09 0.29 0.004

plane wave basis set and an all-band (unconstrained) conjugate
gradient (CG) approach. Part of the calculation is carried out
in Fourier space; custom parallel three-dimensional FFTs are
used to transform the wavefunctions between real and Fourier
space.

PARATEC uses MPI and parallelizes over grid points,
thereby achieving a fine-grain level of parallelism. The real-
space data layout of wave-functions is on a standard Carte-
sian grid. In general, the speed of the FFT dominates the
runtime, since it stresses global communications bandwidth,
though mostly point-to-point, using relatively short messages.
Optimized system libraries (such Intel MKL or AMD ACML)
are used for both BLAS3 and 1-D FFT; this results in high
cache reuse and a high percentage of per-processor peak
performance.

The benchmark used here is based on the NERSC-5 input
that does not allow any aggregation of the transpose data. The
input contains 250 Silicon atoms in a diamond lattice con-
figuration and runs for 6 conjugate gradient iterations. More
typically NERSC uses a 686-atom system with 20 conjugate
gradient iterations run on 1024 cores for benchmarking. A real
science run might use 60 or more iterations.

8) HPCC: In addition to the application benchmarks dis-
cussed above, we also ran the High Performance Computing
Challenge (HPCC) benchmark suite [32]. HPCC consists of
seven synthetic benchmarks: three targeted and four complex.
The targeted synthetics are DGEMM, STREAM, and two
measures of network latency and bandwidth. These are micro-
kernels which quantify basic system parameters that separately
characterize computation and communication performance.
The complex synthetics are HPL, FFTE, PTRANS, and Ran-
domAccess. These combine computation and communication
and can be thought of as very simple proxy applications.
Taken together these benchmarks allow for the measurement
of a variety of lower-level factors that are important for
performance, which is why we chose to use them for this
work.

C. Evaluation Methodology

At NERSC timing results from these application bench-
marks are used to compute the Sustained System Performance
(SSP) metric [27], an aggregate measure of the workload-
specific delivered performance of a computing system. The
SSP is derived from an application performance figure, Pi,
expressed in units of GFlops per second per core. Given a
system configured with N computational cores, the SSP is the
geometric mean of Pi over all M applications, multiplied by

N, which is the size of the system being considered.

SSP = N

(
M∏
i=1

Pi

)(1/M)

. (1)

The floating-point operation count used in calculating Pi

for each of the seven component applications has been pre-
determined using a hardware performance counter on a single
reference system at NERSC, the Cray XT4. The reference
counts are combined with the times from other systems to
calculate the SSP for those systems.

The SSP is evaluated at discrete points in time and also as
an integrated value to give the systems potency, meaning an
estimate of how well the system will perform the expected
work over some time period. Taken together, the NERSC
SSP benchmarks, their derived aggregate measures, and the
entire NERSC workload-driven evaluation methodology create
a strong connection between science requirements, how the
machines are used, and the tests we use.

IV. RESULTS

A. HPC Challenge

The results of running HPCC v.1.4.0 on 64 cores of the four
machines in our study are shown in Table I. The DGEMM
results are as one would expect based on the properties of the
CPUs. The STREAM results show that EC2 is significantly
faster for this benchmark than Lawrencium. We believe this is
because of the particular processor distribution we received for
our EC2 nodes for this test. We had 26 AMD Opteron 270’s,
16 AMD Opteron 2218 HE’s, and 14 Intel Xeon E5430’s,
of which this measurement represents an average. The AMD
Opteron based systems are known to have better memory
performance than the Intel Harpertown-based systems used
in Lawrencium. Both EC2 and Lawrencium are significantly
slower than the Nehalem-based Carver system, however.

The network latency and bandwidth results clearly show the
difference between the interconnects on the tested systems.
For display we have chosen both the average ping-pong
latency and bandwidth, and the randomly-ordered ring latency
and bandwidth. The ping-pong results show the latency and
the bandwidth with no self-induced contention, while the
randomly ordered ring tests show the performance degradation
with self-contention. The uncontended latency and bandwidth
measurements of the EC2 gigabit ethernet interconnect are
more than 20 times worse than the slowest other machine.
Both EC2 and Lawrencium suffer a significant performance
degradation when self-contention is introduced. The EC2



0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

GA
M
ES
S 

GT
C 

IM
PA
CT
 

fvC
AM

 

M
AE
ST
RO
25
6 

Ru
n$

m
e 
Re

la
$
ve
 to

 C
ar
ve
r 

Amazon EC2 

Lawrencium 

Franklin 

0 

10 

20 

30 

40 

50 

60 

MILC  PARATEC 

Ru
n$

m
e 
Re

la
$
ve
 to

 C
ar
ve
r 

Amazon EC2 

Lawrencium 

Franklin 

Fig. 2. Runtime of each application on EC2, Lawrencium and Franklin relative to Carver.

latency is 13 times worse than Lawrencium, and more than 400
times slower than a modern system like Carver. The bandwidth
numbers show similar trends: EC2 is 12 times slower than
Lawrencium, and 30 times slower than Carver.

We now turn our attention to the complex synthetics. The
performance of these is sensitive to characteristics of both the
processor and the network, and their performance gives us
some insight into how real applications may perform on EC2.

HPL is the high-performance version of the widely-reported
Linpack benchmark, which is used to determine the TOP500
list. It solves a dense linear system of equations and its per-
formance depends upon DGEMM and the network bandwidth
and latency. On a typical high performance computing system
today roughly 90% of the time is spent in DGEMM and the re-
sults for the three HPC systems illustrate this clearly. However,
for EC2 the less capable network clearly inhibits overall HPL
performance, by a factor of six or more. The FFTE benchmark
measures the floating point rate of execution of a double
precision complex one-dimensional discrete Fourier transform,
and the PTRANS benchmark measures the time to transpose a
large matrix. Both of these benchmarks performance depends
upon the memory and network bandwidth and therefore show
similar trends. EC2 is approximately 20 times slower than
Carver and four times slower than Lawrencium in both cases.
The RandomAccess benchmark measures the rate of random
updates of memory and its performance depends on memory
and network latency. In this case EC2 is approximately 10
times slower than Carver and three times slower than Lawren-
cium.

Overall the results of the HPCC runs indicate that the lower
performing network interconnect in EC2 has a significant
impact upon the performance of even very simple application
proxies. This is illustrated clearly by the HPL results which
are significantly worse than would be expected from simply
looking at the DGEMM performance.

B. Applications
Figure 2 shows the relative runtime of each of our test

applications relative to Carver, which is the newest, and there-
fore fastest, machine in our testbed. For these applications, at

these concurrencies, Franklin and Lawrencium are between
1.4× and 2.6× slower than Carver. For EC2 the range of
performance observed is significantly greater. In the best case,
GAMESS, EC2 is only 2.7× slower than Carver. For the
worst case, PARATEC, EC2 is more than 50× slower than
Carver. This large spread of performance simply reflects the
different demands each application places upon the network,
as in the case of the compact applications that were described
in the previous section. Qualitatively we can understand the
differences in terms of the performance characteristics of each
of the applications described in Section III-B. PARATEC
shows the worst performance on EC2, 52× slower than
Carver. It performs 3-DFFT’s, and the global (i.e., all-to-
all) data transposes within these FFT operations can incur a
large communications overhead. MILC (20×) and MAESTRO
(17×) also stress global communication, but to a lesser extent
than PARATEC. CAM (11×), IMPACT (9×) and GTC (6×)
are all characterized by large point-to-point communications,
which do not induce quite as much contention as global
communication, hence their performance is not impacted quite
as much. GAMESS (2.7×), for this benchmark problem,
places relatively little demand upon the network, and therefore
is hardly slowed down at all on EC2.

Qualitatively, it seems that those applications that perform
the most collective communication with the most messages are
those that perform the worst on EC2. To gain a more quan-
titative understanding, we perform a more detailed analysis,
which is described in the next section.

C. Performance Analysis Using IPM

To understand more deeply the reasons for the poor per-
formance of EC2 in comparison to the other platforms we
performed additional experiments using the Integrated Per-
formance Monitoring (IPM) framework [19], [33]. IPM is a
profiling tool that uses the MPI profiling interface to measure
the time taken by an application in MPI on a task-by-task
basis. This allows us to examine the relative amounts of time
taken by an application for computing and communicating,
as well as the types of MPI calls made. These measurements



0 

5 

10 

15 

20 

25 

0  10  20  30  40  50  60  70  80 

Ru
n$

m
e 
Re

la
$
ve
 to

 L
aw

re
nc
iu
m
 

%Communica$on 

Ping Pong Latency  Ping Pong Bandwidth 

Random Ring Latency  Random Ring Bandwidth 

PARATEC 

MILC 

MAESTRO 

fvCAM 

IMPACT‐T 

GTC 

Fig. 3. Correlation between the runtime of each application on EC2 and the
amount of time an application spends communicating.

will enable us to determine which particular aspects of the
EC2 hardware configuration are most inhibiting performance
on an application by application basis in a quantitative manner.
Previous measurements with IPM have shown that it has ex-
tremely low overhead [33], less that 2%, giving us confidence
that by instrumenting the applications with IPM we are not
altering their runtime characteristics.

One of the simplest metrics available from IPM is the
percentage of the runtime that the application spends commu-
nicating (time in the MPI library to be precise). Figure 3 shows
the relative runtime on EC2 compared to Lawrencium plotted
against the percentage communication for each application
as measured on Lawrencium. The overall trend is clear:
the greater the fraction of its runtime an application spends
communicating, the worse the performance is on EC2.

The principle exception to this trend is fvCAM, where the
performance on EC2 is much faster than would be expected
from the simple considerations described above. To understand
why this is we analyzed the communication characteristics
of each of the applications to determine if fvCAM was an
anomalous case. To determine these characteristics we classi-
fied the MPI calls of the applications into 4 categories: small
and large messages (latency vs bandwidth limited) and point-
to-point vs collective. (Note for the purposes of this work we
classified all messages < 4KB to be latency bound. The overall
conclusions shown here contain no significant dependence
on this choice.) From this analysis it is clear why fvCAM
behaves anomalously; it is the only one of the applications that
performs most of its communication via large messages, both
point-to-point and collectives. To understand why this causes
the performance on EC2 to be faster, consider the HPCC
challenge results shown in table I. Compared to Lawrencium
the EC2 ping-pong latency is 35× worse whereas the ping-
pong bandwidth is 20× worse and the random ring latency and
bandwidth are 13 & 12× worse. (Note that to a reasonable
approximation, the performance of point-to-point messages

will follow the trends of the ping-pong measurements and the
performance of collectives will follow those of the random-
ring measurements.) Therefore any application that spends
a significant amount of its communication performing large
messages via point-to-point messages in the latency limit,
which in fact is all of the applications here except fvCAM,
will be slower, relatively speaking, than one which operates
in the bandwidth limit or primarily performs collectives. The
slowdown expected for an application that only performs one
of these four potential modes of communication is also shown
in Fig. 3. As is clear from the figure, the faster performance for
fvCAM is quite reasonable given its communication pattern.

Thus using quantitative analysis based upon instrumenting
our applications with IPM we have explained the reason that
each application is slowed down by different amounts when
running on EC2.

D. Sustained System Performance

Figure 4a shows the sustained floating point rate per core
achieved by each application on each machine. Often this
is presented as percentage of peak, but in this case the
inhomogeneous CPU environment on EC2 makes that impos-
sible to calculate. The rate achieved by the applications is
representative of their computational intensity (ratio of floating
point operations to memory operations) as well as the amount
of time they spend communicating.

In order to combine these measurements into a single metric
that represents the overall performance for this workload
we calculate the SSP for these applications on a 3200 core
machine. (N = 3200 in Equation 1.) We chose 3200 cores
as it is the size of Carver, and represents a reasonable mid-
size HPC system today. (Ideally, of course, our calculation
would be based upon the size of EC2 as that is what we
are evaluating here; unfortunately that is not possible.) We
note that the particular number of cores used only affects the
magnitude of the SSP, not the relative ratios between values
for different machines.

The results of the SSP calculation are shown in Figure 4b.
It shows that the sustained performance for Carver is more
than 2 TF/s or almost 7% of peak. Franklin, Lawrencium and
EC2 are 1.5, 1.2 and 0.2 TF/s respectively. (Note that this
value differs from the published one for Franklin because, as
described in Section III-B, the problem sizes in this work are
drastically reduced.) Thus, for this workload in aggregate, the
slowest of our HPC systems, Lawrencium, is six times faster
than EC2, and the fastest, Carver is nearly 12 times faster.

V. DISCUSSION

As we saw in the last section, the overall performance
of EC2, running this workload, is significantly slower than
a typical mid-size cluster like Lawrencium. Our experiments
show that this is largely because of the network interconnect
available in EC2. This is borne out by the data in Section IV-C,
showing that the larger percentage of time an application
spends in communication, the worse its overall EC2 perfor-
mance will be. In addition, the applications communication



0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

GA
M
ES
S 

GT
C 

IM
PA
CT
 

fvC
AM

 

M
AE
ST
RO
 

M
ILC
 

PA
RA
TE
C 

Ra
te
 (G

FL
O
PS
/s
/c
or
e)
 

Carver 

Franklin 

Lawrencium 

EC2 

(a) Sustained performance per core for each of the applications on each of
the machines. The PARATEC values for Carver, Franklin and Lawrencium
are truncated for clarity. They are 4.6, 3.2 and 1.8 Gflop/s/core respectively.

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

Carver  Franklin  Lawrencium  EC2 

Su
st
ai
ne

d 
Sy
st
em

 P
er
fo
rm

an
ce
 

(T
F/
s)
 

(b) Sustained system performance for Carver, Franklin, Lawrencium and EC2
for the benchmark suite defined in Section III-B.

Fig. 4. Sustained performance a) on a per application and per machine basis b) on a per machine basis only.

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

Run 1  Run 2  Run 3  Run 4  Run 5  Run 6  Run 7 

Co
m
pu

ta
(
on

 T
im

e 
in
 S
ec
on

ds
 

(a) PARATEC computation time variability

0 

5000 

10000 

15000 

20000 

25000 

Run 1  Run 2  Run 3  Run 4  Run 5  Run 6  Run 7 

Co
m
m
un

ic
a)

on
 T
im

e 
in
 S
ec
on

ds
 

(b) PARATEC communication time variability

Fig. 5. Paratec performance variability on EC2.

pattern affects how it uses the network interconnect, and will
also affect the performance. As seen with PARATEC, all-to-
all communications performed to transpose data can severely
hamper performance.

While conducting this study, we discovered a significant
amount of variability in application performance. One of the
sources of this variability in the Amazon cloud environment
is the non-homogeneous nature of the systems allocated, as
described in Section III-A4. During our testing we saw three
different processor types: two AMD Opteron CPUs and one
Intel Xeon, with the particular distribution varying from test to
test. This heterogeneity makes benchmarking difficult, as it is
hard to compare two different runs as a completely different
set of processors may be acquired on the next test. In this
work our benchmarks are a snapshot of what the performance
was with a particular set of resources at a particular time.
We note that for application developers this inhomogeneity
causes difficulties with performance tuning and load-balancing
applications. Another source of variability is introduced by
network contention. The switching fabric is shared between
all of the EC2 users, and may be heavily contended for.

One last source of variability over which we have no control,

nor way of discovering, is if we are sharing the un-virtualized
hardware or not. For example, multiple virtual machines may
be running on the same physical machine. If one of our nodes
is sharing the hardware with another virtual machine that is
making extensive use of some hardware component, like the
network interface, our performance will suffer.

To study this variability, and understand quantitatively its
effect, we conducted seven runs of the PARATEC application
using different virtual cluster instances. In Figure 5a we
show the time spent in computation for each of these runs
as measured using IPM. Overall there is a 30% variability
seen in compute time which can be explained by examining
the processor distribution acquired for each run. In the first
run, which was the slowest, our virtual cluster had 48 of the
2.0GHz AMD 270 processors, and only 2 of the 2.66GHz
Intel E5430 processors. On the other hand, run seven spent
the least amount of time in computation. For that run we had
18 of the slower AMD 270’s, and 26 of the Intel E5430’s,
and 8 of the 2.66GHz AMD 2218 HE processors. As we
anticipated, computation time can vary significantly based on
the distribution of processors acquired. In Figure 5b we show
the time spent in communication for these runs. As discussed



0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

0  20  40  60  80 

Ti
m
e 
(s
) 

Number MPI tasks 

EC2 

Lawrencium 

(a) PARATEC runtime scaling on EC2 and Lawrencium.

0 

5000 

10000 

15000 

20000 

0  20  40  60  80 

Ti
m
e 
(s
) 

Number MPI tasks 

EC2 

Lawrencium 

(b) MILC runtime scaling on EC2 and Lawrencium

Fig. 6. PARATEC and MILC runtime scaling on EC2 and Lawrencium.

in Section IV-B, PARATEC’s communication pattern performs
particularly poorly on EC2. Communication accounts for
approximately 97% of the overall runtime, and accounts for
most of the variability in runtime. The difference between
the maximum and minimum runtime is 7,900 seconds, or
approximately 42% of the mean runtime. This clearly shows
the extreme variability in network performance within EC2.

In an attempt to mitigate the effect of the poor performance
of the EC2 network (and its variability) we also performed
experiments using fewer overall MPI tasks, for the PARATEC
and MILC applications on both EC2 and Lawrencium. The
results of these are shown in Figures 6a and 6b. The principle
observation is that even though we are now using one-half or
one-quarter as many nodes the EC2 runtime still shows sig-
nificant effects due to variability. In fact these are completely
dominant, suggesting that unless one is using a loosely coupled
application, one is better off running applications exclusively
within a single EC2 node. The Lawrencium results show the
expected strong-scaling behavior.

We don’t explicitly address cost in this work, because it is
highly dependent on the specific application and operational
requirements of a given collaboration. However there is a
direct correlation between cost and performance, and we
believe that these performance metrics will prove to be an
invaluable tool for computing the true cost of running on the
cloud for a given scientific group. This cost will depend on
several factors including the size of the application, its need
for concurrency, its IO requirements, its fault-tolerance and
the general software integration and porting challenges. These
are highly site and application dependent.

We also do not address I/O performance in this paper. While
we recognize that I/O performance is critical to many HPC
applications, we chose to focus this study on computational
performance. We expect that future work will examine I/O
and Wide Area Network (WAN) performance from a scientific
application perspective.

One major lesson of this study was that the mean time
between failures (MTBF) of individual nodes in a virtual
cluster is significantly higher than in a traditional HPC envi-

ronment. Traditional MPI based applications are intolerant of
node failures and other transient errors. Our experience with
the Amazon Web Services environment is that a variety of
transient failures can occur, including an inability to access the
user-data passed in during image startup, failure to properly
configure the network, failure to boot properly, and other per-
formance perturbations, including intermittent virtual machine
hangs. While none of these errors occurred frequently, they do
in aggregate happen often enough that it becomes a significant
barrier to running MPI applications. Approximately one in ten
runs would need to be restarted due to some failure.

A common failure that must be handled by the virtual cluster
software is resource unavailability. In general, we found that
the software creating the virtual cluster cannot assume that it
will always acquire all of the requested resources. Allocating
128 or more cores at once is not always practical, and results
in indefinite hangs and costly idling of resources if the request
cannot be fulfilled. For this reason, we confined our tests to
running on no more than 256 cores. Scheduling resources for
larger core counts appears to be impractical at this time with-
out moving to higher-cost reservation services, thus severely
limiting the ability to run many of the applications common
at supercomputing centers.

VI. CONCLUSIONS

While cloud computing has proven itself useful for a wide
range of e-Science applications, its utility for more tightly-
coupled HPC applications has not been proven. In this paper
we have quantitatively examined the performance of a set of
benchmarks designed to represent a typical HPC workload
run on Amazon EC2. Our data clearly shows a strong corre-
lation between the percentage of time an application spends
communicating, and its overall performance on EC2. The
more communication, the worse the performance becomes.
We were also able to see that the communication pattern
of the application can have a significant impact on perfor-
mance. Applications, like PARATEC, with significant global
communication perform relatively worse than those with less
global communication. Finally we learned that the amount of



variability in EC2 performance can be significant. Variability is
introduced by the shared nature of the virtualized environment,
by the network, and by differences in the underlying non-
virtualized hardware.

VII. ACKNOWLEDGEMENTS

This work was funded in part by the Advanced Scientific
Computing Research (ASCR) in the DOE Office of Science
under contract number DE-C02-05CH11231. NJW was sup-
ported by the NSF under award OCI-0721397. The authors
would like to thank Masoud Nikravesh and CITRIS, UC
Berkeley for their generous donation of Amazon EC2 time.

REFERENCES

[1] S. Hazelhurst, “Scientific computing using virtual high-performance
computing: a case study using the Amazon elastic computing cloud,”
in Proceedings of the 2008 annual research conference of the South
African Institute of Computer Scientists and Information Technologists
on IT research in developing countries: riding the wave of technology.
ACM, 2008, pp. 94–103.

[2] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the cloud: the montage example,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008, pp. 1–12.

[3] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,
“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud Computing and Applications, vol. 2008, 2008.

[4] K. Keahey, “Cloud Computing for Science,” in Proceedings of the
21st International Conference on Scientific and Statistical Database
Management. Springer-Verlag, 2009, p. 478.

[5] J. Napper and P. Bientinesi, “Can cloud computing reach the top500?”
in Proceedings of the combined workshops on UnConventional high per-
formance computing workshop plus memory access workshop. ACM,
2009, pp. 17–20.

[6] C. Evangelinos and C. Hill, “Cloud Computing for parallel Scientific
HPC Applications: Feasibility of running Coupled Atmosphere-Ocean
Climate Models on Amazons EC2.” ratio, vol. 2, no. 2.40, pp. 2–34,
2008.

[7] R. Masud, “High Performance Computing with Clouds.”
[8] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “An early performance analysis of cloud computing services
for scientific computing,” Delft University of Technology, Tech. Rep,
2008.

[9] E. Walker, “Benchmarking amazon EC2 for high-performance scientific
computing,” USENIX Login, vol. 33, no. 5, pp. 18–23, 2008.

[10] G. Wang and T. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in Proceedings of IEEE
INFOCOM, 2010.

[11] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier, “Scientific
computations on modern parallel vector systems,” in Proc. SC04:
International Conference for High Performance Computing, Networking,
Storage and Analysis, Pittsburgh, PA, Nov 6-12, 2004.

[12] L. Oliker, J. Carter, M. Wehner et al., “Leading computational methods
on scalar and vector HEC platforms,” in Proc. SC05: International
Conference for High Performance Computing, Networking, Storage and
Analysis, Seattle, WA, Nov 12-18, 2005.

[13] J. Carter, L. Oliker, and J. Shalf, “Performance evaluation of scientific
applications on modern parallel vector systems,” in VECPAR: High
Performance Computing for Computational Science, Rio de Janeiro,
Brazil, July 10-12, 2006.

[14] L. Oliker, A. Canning, J. Carter et al., “Scientific application perfor-
mance on candidate petascale platforms,” in Proc. IEEE International
Parallel & Distributed Processing Symposium (IPDPS), Long Beach,
CA, Mar 26-30, 2007.

[15] T. H. Dunigan Jr., J. S. Vetter, J. B. White III, and P. H. Worley,
“Performance evaluation of the Cray X1 distributed shared-memory
architecture,” IEEE Micro, vol. 25(1), pp. 30–40, Jan/Feb 2005.

[16] K. Nakajima, “Three-level hybrid vs. flat MPI on the earth simulator:
Parallel iterative solvers for finite-element method,” in Proc. 6th IMACS
Symposium Iterative Methods in Scientific Computing, vol. 6, Denver,
CO, Mar 27-30, 2003.

[17] J. Vetter, S. Alam, T. Dunigan, Jr. et al., “Early evaluation of the Cray
XT3,” in Proc. IEEE International Parallel & Distributed Processing
Symposium (IPDPS), Rhodes Island, Greece, April 25-29, 2006.

[18] F. Gygi, E. W. Draeger, B. R. de Supinski et al., “Large-scale first-
principles molecular dynamics simulations on the BlueGene/L platform
using the Qbox code,” in Proc. SC05: International Conference for High
Performance Computing, Networking, Storage and Analysis, Seattle,
WA, Nov 12-18, 2005.

[19] D. Skinner, “Integrated Performance Monitoring: A portable profiling
infrastructure for parallel applications,” in Proc. ISC2005: International
Supercomputing Conference, Heidelberg, Germany, 2005.

[20] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for science grids: a viable solution?” in Proceedings of the 2008
international workshop on Data-aware distributed computing. ACM,
2008, pp. 55–64.

[21] K. Keahey, T. Freeman, J. Lauret, and D. Olson, “Virtual workspaces
for scientific applications,” in Journal of Physics: Conference Series,
vol. 78. Institute of Physics Publishing, 2007, p. 012038.

[22] L. Ramakrishnan, K. R. Jackson, S. Canon, S. Cholia, and J. Shalf,
“Defining Future Platform Requirements for e-Science Clouds,” in
Proceedings of the ACM Symposium on Cloud Computing (SoCCi).
ACM, 2010.

[23] J. Li, D. Agarwal, M. Humphrey, C. van Ingen, K. Jackson, and Y. Ryu,
“eScience in the Cloud: A MODIS Satellite Data Reprojection and
Reduction Pipeline in the Windows Azure Platform,” in Proceedings
of the 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2010), Atlanta, GA, April 19-23, 2010.

[24] J. Rehr, F. Vila, J. Gardner, L. Svec, and M. Prange, “Scientific
computing in the cloud,” Computing in Science and Engineering, vol. 99,
no. PrePrints, 2010.

[25] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and
X. Zhang, “Virtual clusters for grid communities,” in Proceedings of
the Sixth IEEE International Symposium on Cluster Computing and the
Grid. Citeseer, 2006, pp. 513–520.

[26] “Amazon Elastic Block Store,” http://aws.amazon.com/ebs/.
[27] W. Kramer, J. Shalf, and E. Strohmaier, “The NERSC Sustained System

Performance (SSP) Metric,” 2005.
[28] K. Antypas, J. M. Shalf, and H. Wasserman, “NERSC-6 workload

analysis and benchmark selection process,” LBNL, Tech. Rep., 2008.
[29] “CAM3.1,” http://www.ccsm.ucar.edu/models/atm-cam/.
[30] “Community Atmopshere Model,” http://www.cgd.ucar.edu/csm/

models.atm-cam.
[31] W. W. Lee, “Gyrokinetic particle simulation model,” J. Comp. Phys.,

vol. 72, 1987.
[32] “HPCC benchmark web page: http://icl.cs.utk.edu/hpcc/.”
[33] N. J. Wright, W. Pfeiffer, and A. Snavely, “Characterizing parallel scal-

ing of scientific applications using IPM,” in The 10th LCI International
Conference on High-Performance Clustered Computing, March 10-12,
2009.


